The McGraw-Hill Companies _

FOURTH EDITION

~ 8 -I-.F‘

L

Y

0{\\ oS a’;}o

OBJECT /7
ORIENTED /- =%
=

|

%

: 3

[

A

el
- ¥

[

[}
|

1

[
) _}:

Y

=" PROGRAMMING ~-o¢

b e e

i ¢

¥ +
v +
N 4 +
) ¢
Y {

r 1

oA 2 S ;.’s}-

iy

* ¥

- v
-l iy
A A b b

E BALAGURUSAMY

Now a unique opportunity to access the Web Resources!

Look for the Genuinaness Catiicale insida the book]

l

[Scrafch the silver ink on the Genuinenass Cerdificate to tind your Unique Access Number* J

L4
{ Access the website]

Rt fwww. mbihe. comvbalagurusamy/oopde

¥

[Chick on tha First Time Usars Link in the OLC menu an your left J

[Al tha bottom of the text appearing on your right-hand side, ook for Register Now]

and click on tha Student Enk

. J

[Mow click on the link that says: | have a registration code that came with my book. J

l

When asked to enfar your code, fype in your Unique Access Mumber]

o

[Create your Personalized Account by selecting your username and password]

l

[Click on the Student Edition Link in the OLC manu on your left]

l

[Login using your parsonalkzed usamame and passwond]

* This numbear is meant for one time use and is saif desiruchibie

FOURTH EDITIOMN

il 0
Irr

.+ ORIENTED
~ PROGRAMMING

"
%
%
)
*
L]

"'rr e
-I._f'f
)

"l

This One [

O R
COKZ-DEXBIOK 1 o material

DGX-5

About the Author

E Balagurusamy, former Vice Chancellor, Anna University, Chennai, is currently Member,
Union Public Service Commission, New Delhi. He is a teacher, trainer, and consultant in
the fields of Information Technology and Management. He holds an ME (Hons) in Electrical
Engineering and a Ph. D. in Systems Engineering from the Indian Institute of Technology,
Roorkee. His areas of interest include Object-Oriented Software Engineering, Electronic
Business, Technology Management, Business Process Re-engineering, and Total Quality
Management.

A prolific writer, he has authored a large number of research papers and several books.
His best selling books, among others include:

Programming in C#, 2/e
Programming in Java, 3/e
Programming in ANSI C, 4/e
Programming in BASIC, 3/e
Numerical Methods, and
Reliability Engineering

LA N N NN

A recipient of numerous honours and awards, he has been listed in the Directory of
Who's Who of Intellectuals and in the Directory of Distinguished Leaders in Education.

OBJECT
ORIENTED
PROGRAMMING
WITH

C++

FOURTH EDITION

E Balagurusamy _

Member
Union Public Service Commission
New Delhi

Tata McGraw-Hill Publishing Company Limited
NEW DELHI

Mo Graw-Hill Cffices

New Delhi MNew York St Louis San Francisco Auckland Bopoti Caracas
Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal
San Juan Santiago Singapore Sydney Tokve Toronto

i—l| Tata McGraw-Hill

Published by Tata MoGraw-Hill Publishing Company Limited,
7 West Patel Magar, New Delhi 110 008,

Copyright © 2008, 2006, 2001, 1994, by Tata McGraw-Hill Publishing Company Limited

No part of this publication may be reproduced or distributed in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise or stored in a database or retrieval system without the prios
written permission of the publishers, The program listings (if any) may be entered, =tored and execwied in a
computer system, but they may not be reproduced for publication.

Fouwrth reprint 2008
DOLCRDRXRAZXNE

This edition can be exported from India only by the publishers,
" Tata McGraw-Hill Publishing Company Limited.

ISBN (13 digits): 978-0-07-066907-9
ISBN (10 dugits): O-07-066907 -4

Muanaging Director: Ajay Shukia

Creneral Manager: Publishing—SEM & Tech Ed: Vibha Mahajan
Sponsoring Editor: Shalind Sha

Jr. Sponsoring Editor: Nilanjan Chakravarty

Senior Copy Editor: Dipika Dey

senior Prodoction Manager: P L Ponding

Creneral Manager: Marketing—Higher Education & School: Mickael J, Criz
Product Manager; SEM & Tech Ed: Biju Ganesan

Controller—Production: Rajender P Ghansela
Asst. Gieneral Manager—Production: 8 L Dogra

Information contained in this work has been obtained by Tata McGraw-Hill, from sources believed o be
reliable, However, neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of any
information published herein, and peither Tata McGraw-Hill nor its authors shall be responsible for any
errors, omissions, or damages arising out of vse of this information, This work is published with the
understanding that Tata McGraw-Hill and its authors are supplying information bt are nol attempling 1o
render engimeering or other professional services. If such services are required, the assistance of an
appropriate professional should be sought.

Typeset at Script Makers, 19, Al-B, DDA Market, Paschim Vihar, New Delli 110 063, and prainted at
Gopsons, A-2 & 3, Sector 64, Noida - 201 30/

Cover: Gopsons

rhe McGraw-Hill Companies

Contents

Preface xiLi
1. Principles of Object-Oriented Programming 1
1] Soft Crisis 7

1.2 Software Evolution 3
1.3 A Look at Procedure-Oriented Propramming 4
1.4 Object-Oriented Programming Paradigm 6
1.5 Basic Concepta of Object-Oriented Prt;grﬂ.mming i
16 Benefits of OOPF 12
1.7 Object-Oriented Languages 13
1.8 Applications of QOP 14
Summary 15
Review Questions 17

2. Beginning with C++ 19

21 What 1a C+4+7 19
2.2 Applications of C++ 20
2.3 A Simple C++ Program 20
24 More C44 Statements 35
2.5 An Example with Class 258
2.6 Structure of C++ Program 29
2.7 Creating the Source File 30
2.8 Compiling and Linking 30
Summary J1
Review Questions 32
Debugging Exercises 33
Programming Exercises 34

3. Tokens, Expressions and Control Structures 35

d1 Introduction 35

3.9 Tal 26

3.3 Kevwords 36

44 Identifiers and Constants 36
a5 Basic Data Types 38

3.6 User-Defined Data Types 40
3.7 Derived Data Types 42

vi ® Contents
3.8 Symbolic Constants 4.3
3.9 Type Compatibility 45
210 Declaration of Variables 45
3.11 Dynamic Initialization of Variables 46
312 Referencs Variables 47
3.13 Operators in C++ 49
3.14 Scope Resolution Operator 50
3.15 Member Dereferencing Operators 52
316 Memory Management Operators 52
3.17 Manipulators 55
3.18 Type Cast Operator 57
3.19 Expressions and their Types 58
3.20 Special Assignment Expressions 60
3.21 Implicit Conversions 61
322 Operator Overloading 63
3.23 Operator Precedence 63
424 Control Structures &4
Summary 69
Review Questions 71
Debugging Exercises T2
Programming Exercises 75
4, Functions in C++ 77
41 Introduction 77
42 The Main Function 78
4.3 Function Prototyping 79
4.4 Call by Reference 81
4.5 Heturn by Reference 82
L 6 Inline F : T
4.7 Default Arpuments 84
4.8 const Arpuments 87
4.9 Function Overloading 87
4.11 Math Library Functions 50
Summary 50
Review Questions 92
Debugging Exercises 853
Programming Exercises 95
IS. Classes and Objects 96

g1 Introduction 96
T C S Revisited 97

5.4

Specifying a Class 99

Contents

b.4 Defining Member Functions 103
5.5 A C++ Program with Class 104
5.6 Making an Outzide Function Inline 106
5.7 Nesting of Member Functions 107
68 Private Member Functions 108
59 Arrays within a Clags 109
5.10 Memory Allocation for Objectz 114
511 Static Data Members 115
5.12 Static Member Functions 117
5.13 Arravs of Objects 119
5.14 Objects as Function Arguments 122
5.15 Friendly Functions 124
5.16 Returning Objects 130
5.18 Pointers to Members 132
5.19 Local Classes]34
Summary 135
Review Questions 136
Debugging Exercises 137
Programming Exercises 142

® vii

6. Constructors and Destructors 144
61 Introduction 44
62 Constructors J45
6.4 Multiple Constructors in a Class 150
6.6 Constructors with Default ﬁLrEumth-; Ia3
6.6 Dyvnamic Initialization of Objects 153
6.7 Copy Constructor 156
6.8 Dvnamic Constructors 158
6.9 Constructing Two-dimensional Arrays 160
6.10 const Objects 162
611 Destructors J62
Summary 164
Review Questions 165
Debugging Exercises 166
Programming Exercises 169
7. Operator Overloading and Type Conversions 171

11 Introduction 777

7.2 Defining Operator Overloading 172
7.3 Owverloading Unary Operators 173
7.4 Overloading Binary Operators 176

viii ®

Contenis

7.5

Overloading Binary Operators Using Friends

I78

7.6

Manipulation of Strings Using Operators 183

7.7

Rules for Overloading Operators 186

7.8

Type Conversions I87

Summary 185

Review Questions 196
Debugging Exercises 197
Programming Exercizses 200

8. Inheritance: Extending Classes

201

81 Introduction 2071

8.2

Defining Derived Classes 202

8.3

Eil‘.l.E’]E Inheritance 204

8.4

Making a Private Member Inheritable 210

85 Multilevel Inheritance 2713

8.6

Multiple Inheritance 218

87 Hierarchical Inheritance 224

8.8

Hybrid Inheritance 225

8.10 Abstract Classes 232

8.12

Member Classes: Nesting of Classes 240

9. Pointers, Virtual Functions and Polymorphism

Summary 241

Review Questions 243
Debugging Exerciges 243
Programming Exercises 248

251

81 Introduction 257
92 Pointers 253

9.3

Pointers to Objects 265

24

this Pointer 270

9.5 Pointers to Derived Classes 273
T Vi 1F , 575

Summary 282

Review Questions 283
Debugging Exercises 284
Programming Exercises 289

10. Managing Console I/O Operations

10.1 Introduction 290
102 Ctt+ Streams 297

290

Contents & ix

10.3 ;HIIEHIfEE fEiEEEE' 252

10.4 Unformatted V'O Operations 292
10.5 Formatted Console 'O Operations 301
10.6 Managing OQutput with Manipulators 312
Summary 317
Review Questions 319
Debugging Exercizses 320
Programming Exercises 321
11. Working with Files 323
111 Introduection 333
11.2 Classes for File Stream Operations 325
11.3 Opening and Closing a File 325
114 Detecting end-of-file 334
1.5 More about Openi): File Modes 334
11.6 File Pointers and Their Manipulations 335
11.7 Sequential Input and Output Operations 338
118 Updating a File: Random Acess 343
119 Error Handling During File Operations 348
11.10 Command-line Arguments 350
Summary 353
Review Questions 355
Debugging Exercises 356
Programming Exercises 358
12. Templates 359
121 Introduction 359
122 Class Templates 360
12.3 Class Templates with Multiple Parameters 365
124 Function Templates 366
1256 Function Templates with Multiple Parameters 371
126 Overloading of Template Functions 372
12,7 Member Function Templates 373
128 Non-Type Template Arguments 374
Summary 375
Heview Questions 376
Debugging Exercises 377
Programming Exercises 379
13. Exception Handling 380
121 Introducti 280
13.2 Basics of Exception Handling 381

X ®

Contents

13.3

Exception Handling Mechanism 381

13.4
13.5
13.6

Throwing Mechanism 386
Catching Mechanism J86
Rethrowing an Exception 391

13.7

Specifying Exceptions 392

Summary 394

Review Questions 395
Debugging Exercises 396
Programming Exercises 400

IH. Introduction to the Standard Template Library 401
141 Introduction 407
14.2 Components of STL. 402
143 Contai 7
144 Algorithms 406
14 5 [terators 408
146 Application of Container Classes 409
147 Function Objects 418
summary 421
Review Questions 4323
Debugging Exercises 424
¢ Programming Exercizes 428
15. Manipulating Strings 428
151 Introduction 428
15.2 Creating (string) Objects 430
153 Manipulating String Objects 432
15.4 HRelational Operations 433
15.56 String Characteristics 434
15.6 Accessing Characters in Strings 436
15.7 Comparing and Swapping 438
Summary 440
Review Questions 441
Debugging Exercizses 442
Programming Exercises 445
16. New Features of ANSI C++ Standard 446

161 Introduction 448

162 New Data Tvpes 447

16.3 New Operators 449

164 Class Implementation 451

Contents 8 Xi

16.5 DNamespace Scope 453
16.6 Operator Kevwords 459
16.7 New Reyvwords 460
168 New Headers J61
Summary 461
Review Questions 463
Debugging Exercises 464
Programming Exercises 467

Ll‘f. Object-Oriented Systems Development 468

171 Introduction 468
17.2 Procedure-Oriented Paradigms 469
173 Procedure-Oriented Development Tools 472
17.4 Object-Oriented Paradigm 473
17.5 Object-Oriented Notations and Graphs 475
17.6 Steps in Object-Oriented Analvsis 479
17.7 Steps in Object-Oriented Design 483
17.8 Implementation 490
17.9 Prototyping Paradigm 480
7.10 Wrapping Up 481
Summary 492
Review Questions 494

Appendix A: Projects 496
Appendix B: Executing Turbo C++ * 539
Appendix C: Executing C+ + Under Windows 552
Appendix D: Glossary of ANSI C+ + Keywords 564
Appendix E: C+ + Operator Precedence 570
Appendix F: Points to Remember 572
Appendix G: Glossary of Imporiant O+ + and OOP Terms 584
Appendix H: C++ Proficiency Test 596
Bibliographby 632

Index 633

Copyrighted material

Principles of Object-Oriented
Programming

Y Y Y Y Y Y Y YYYYYY

Key Concepts

Software evolution
Procedure-oriented programming
Object-oriented programming
(jects

Classes

Data abstraction
Encapsulation

Inheritance

Pobvmorphizm

Dymamic binding

Message passing
Ohject-oriented lanpuages
1_”1_'|-|"T bazed languages

|1.1 Software Crisis

Developments in software technology
continue to be dynamic. New tools and
techniques are announced in quick
succession, This has forced the software
engineers and industry to continuously look
for new approaches to software design and
development, and they are becoming more
and more critical in view of the increasing
complexity of software systems as well as
the highly competitive nature of the
industry. These rapid advances appear to
have created a situation of crisis within the
industry. The following issues need to be
addressed to face this crisis:

® How to represent real-life entities
of problems in system design?

How to design systems with open
interfaces?

2 ® Object-Oriented Programming with C++

How to ensure reusability and extensibility of modules?

How to develop modules that are tolerant to any changes in future?
How to improve software productivity and decrease software cost?
How to improve the quality of software?

How to manage time schedules?

How to industrialize the software development process?

Many software products are either not finished, or not used, or else are delivered with
major errors. Figure 1.1 shows the fate of the US defence software projects undertaken in
the 1970s. Around 50% of the software products were never delivered, and one-third of
those which were delivered were never used. It is interesting to note that only 2% were used
as delivered, without being subjected to any changes. This illustrates that the software
industry has a remarkably bad record in delivering products.

3.5 - Paid for but
nol recaived
3 -
Deliversd
i 25— bt ol used

s 21 | r
§1.5—

-
a ! |
054 B ! |
B 1 '
0 —— e e | - | . i .

Fig. 1.1 « The state of US defence projects (eccording to fhe LS gmmrnml}- - I

Changes in user requirements have always been a major problem. Another study
(Fig. 1.2) shows that more than 50% of the systems required modifications due to changes
in user requirements and data formats. It only illustrates that, in a changing world with a
dynamic business environment, requests for change are unavoidable and therefore systems
must be adaptable and tolerant to changes.

These studies and other reports on software implementation suggest that software products
should be evaluated carefully for their quality before they are delivered and implemented.
Some of the quality issues that must be considered for critical evaluation are:

Correctness

Maintainability

Reusability

Openness and interoperability

o DO B3

Principles of Object-Oriented Programming ® 3

Portability
Security
Integrity

User friendliness

s

Selection and use of proper software tools would help resolving some of these issues.

Documentation Other Efficiency Changes in user
Hardware ! : improvement requiremants

Changes in
data formats

Fig. 1.2 = Breakdown of maimtenance cosls

1.2 Software Evolution

Ernest Tello, a well-known writer in the field of artificial intelligence, compared the evolution
of software technology to the growth of a tree. Like a tree, the software evolution has had
distinet phases or “layers” of growth, These layvers were built up one by ene over the last five
decades as shown in Fig. 1.3, with each layer representing an improvement over the previous
one, However, the analogy fails if we consider the life of these layers. In software systems,
each of the layers continues to be functional, whereas in the case of trees, only the uppermost
laver 18 functional.

Alan Kay, one of the promoters of the object-oriented paradigm and the principal designer
of Smalltalk, has said: "As complexity increases, architecture dominates the basic material”,
To build today's complex software it is just not enough to put together a sequence of
programming statements and setz of procedures and modules; we need to incorporate sound
construetion techniques and program structures that are easy to comprehend, implement
and modify.

Since the invention of the computer, many programming approaches have been tried.

4@ Object-Oriented Programming with C++

These include techniques such as modular programming, top-down programming, bottom-
up programming and structured programming. The primary motivation in each has been
the concern to handle the increasing complexity of programs that are reliable and
maintainable. These techniques have become popular among programmers over the last
two decades.

Machine language -
Assembly language

Procedure-omented

Otyect-oriented programming

Fig. 13" e Layers of computer software |

With the advent of languages such as C, structured programming became very popular
and was the main technigque of the 1980s. Structured programming was a powerful tool that
enabled programmers to write moderately complex programes fairly easily. However, as the
programs grew larger, even the structured approach failed to show the desired results in
terms of bug-free, easy-to-maintain, and reusable programs.

Object-Oriented Programming (O0OP) 18 an approach to program organization and development
that attempts to eliminate some of the pitfalls of conventional programming methods by
incorporating the best of structured programming features with several powerful new concepts. It
is a new way of organizing and developing programs and has nothing to do with any particular
language. However, not all languages are suitable to implement the OOP concepts easily.

Il.’j A Look at Procedure-Oriented Programming

Conventional programming, using high level languages such as COBOL, FORTRAN and C, is
commonly known as procedure-oriented programming (POF). In the procedure-oriented
approach, the problem is viewed as a sequence of things to be done such as reading, calculating

Prinuiples of Object-Oriented Programming —8 5

and printing. A number of functions are written to accomplish these tasks. The primary focus
is on functions, A typical program structure for procedural programming is shown in Fig. 1.4,
The technique of hierarchical decomposition has been used to specify the tasks to be completed
for solving a problem. .

L o g

F_:um:.-l%un -1 Function - 2 Fi =

Function - 4 Fi -5

L 3

Function - & Function - T Function - 8

Fig. 1.4 = Typical structure of procedure-orienibed Fm;gn_m_s s I

Procedure-oriented programming basically consists of writing a list of instructions (or
actions) for the computer to follow, and organizing these instructions into groups known as
functions. We normally use a flowchart to organize these actions and represent the flow of
control from one action to another. While we concentrate on the development of functions,
very little attention is given to the data that are being used by various functions. What
happens to the data? How are they affected by the functions that work on them?

In a multi-function program, many important data items are placed as global so that they
may be accessed by all the functions, Each function may have its own local data. Figure 1.5
shows the relationship of data and functions in a procedure-oriented program.

Global data are more vulnerable to an inadvertent change by a function. In a large program
it is very difficult to identify what data is used by which function. In case we need to revise
an external data structure, we also need to revise all functions that access the data. This
provides an opportunity for bugs to creep in.

Another serious drawback with the procedural approach is that it does not model real
world problems very well. This is because functions are .mhnn-unaﬂtad u.m.'l do not really
correspond to the elements of the problem.

6 ® Object-Oriented Programming 1eath C++

L '
" /
1"\.\ .-__..-' E-\._\H ._.-" %
I L
5 ,.-"':::\- .-:l':{"\-\.\ i
AN ;o™ X
) - ,-'f) \
A F e \'-. ¥ " |)
Function -1 Funetion -2 | Function -3 |
- E— 1 I
|
Local data | Local data Local data |
]

Fig. 1.5 + Relationship of data and functions in procedural prograntming |

Some characteristics exhibited by procedure-oriented programming are:

Emphasis is on doing things (algorithms),

Large programs are divided into smaller programs known as functions.
Most of the functions share global data.

Data move openly around the system from function to function.
Funections transform data from one form to another.

Employs top-dewn approach in program design.

I 1.4 Object-Oriented Programming Paradigm

The major motivating factor in the invention of ohject-oriented approach is to remove some
of the flaws encountered in the procedural approach. OOFP treats data as a critical element
in the program development and does not allow it to flow freely around the system. It ties
data more closely to the functions that operate on it, and protects it from accidental
modification from outside functions. OOP allows decomposition of a problem into a number
of entities called objects and then builds data and functions around these objects. The
organization of data and functions in ohject-oriented programs is shown in Fig. 1.6. The
data of an object can be accessed only by the functions associated with that object. However,
functions of one object can access the functions of other objects.

Some of the striking features of ohject-oriented programming are:

Emphasis is on data rather than procedure.
Programs are divided into what are known as objects.
® Data structures are designed such that they characterize the objects.

