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|1.1 Software Crisis

Developments in software technology
continue to be dynamic. New tools and
techniques are announced in quick
succession, This has forced the software
engineers and industry to continuously look
for new approaches to software design and
development, and they are becoming more
and more critical in view of the increasing
complexity of software systems as well as
the highly competitive nature of the
industry. These rapid advances appear to
have created a situation of crisis within the
industry. The following issues need to be
addressed to face this crisis:

® How to represent real-life entities
of problems in system design?

# How to design systems with open
interfaces?
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How to ensure reusability and extensibility of modules?

How to develop modules that are tolerant to any changes in future?
How to improve software productivity and decrease software cost?
How to improve the quality of software?

How to manage time schedules?

How to industrialize the software development process?

Many software products are either not finished, or not used, or else are delivered with
major errors. Figure 1.1 shows the fate of the US defence software projects undertaken in
the 1970s. Around 50% of the software products were never delivered, and one-third of
those which were delivered were never used. It is interesting to note that only 2% were used
as delivered, without being subjected to any changes. This illustrates that the software
industry has a remarkably bad record in delivering products.

3.5 - Paid for but
nol recaived
3 -
Deliversd
i 25— bt ol used

s 21 | r
§1.5—

-
a ! |
054 B ! |
B 1 '
0 —— e e | - | . i .

Fig. 1.1 « The state of US defence projects (eccording to fhe LS gmmrnml}- - I

Changes in user requirements have always been a major problem. Another study
(Fig. 1.2) shows that more than 50% of the systems required modifications due to changes
in user requirements and data formats. It only illustrates that, in a changing world with a
dynamic business environment, requests for change are unavoidable and therefore systems
must be adaptable and tolerant to changes.

These studies and other reports on software implementation suggest that software products
should be evaluated carefully for their quality before they are delivered and implemented.
Some of the quality issues that must be considered for critical evaluation are:

Correctness

Maintainability

Reusability

Openness and interoperability

o DO B3
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Portability
Security
Integrity

User friendliness

s

Selection and use of proper software tools would help resolving some of these issues.

Documentation Other Efficiency Changes in user
Hardware ! : improvement requiremants

Changes in
data formats

Fig. 1.2 = Breakdown of maimtenance cosls

1.2 Software Evolution

Ernest Tello, a well-known writer in the field of artificial intelligence, compared the evolution
of software technology to the growth of a tree. Like a tree, the software evolution has had
distinet phases or “layers” of growth, These layvers were built up one by ene over the last five
decades as shown in Fig. 1.3, with each layer representing an improvement over the previous
one, However, the analogy fails if we consider the life of these layers. In software systems,
each of the layers continues to be functional, whereas in the case of trees, only the uppermost
laver 18 functional.

Alan Kay, one of the promoters of the object-oriented paradigm and the principal designer
of Smalltalk, has said: "As complexity increases, architecture dominates the basic material”,
To build today's complex software it is just not enough to put together a sequence of
programming statements and setz of procedures and modules; we need to incorporate sound
construetion techniques and program structures that are easy to comprehend, implement
and modify.

Since the invention of the computer, many programming approaches have been tried.
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These include techniques such as modular programming, top-down programming, bottom-
up programming and structured programming. The primary motivation in each has been
the concern to handle the increasing complexity of programs that are reliable and
maintainable. These techniques have become popular among programmers over the last
two decades.

Machine language -
Assembly language

Procedure-omented

Otyect-oriented programming

Fig. 13" e Layers of computer software |

With the advent of languages such as C, structured programming became very popular
and was the main technigque of the 1980s. Structured programming was a powerful tool that
enabled programmers to write moderately complex programes fairly easily. However, as the
programs grew larger, even the structured approach failed to show the desired results in
terms of bug-free, easy-to-maintain, and reusable programs.

Object-Oriented Programming (O0OP) 18 an approach to program organization and development
that attempts to eliminate some of the pitfalls of conventional programming methods by
incorporating the best of structured programming features with several powerful new concepts. It
is a new way of organizing and developing programs and has nothing to do with any particular
language. However, not all languages are suitable to implement the OOP concepts easily.

Il.’j A Look at Procedure-Oriented Programming

Conventional programming, using high level languages such as COBOL, FORTRAN and C, is
commonly known as procedure-oriented programming (POF). In the procedure-oriented
approach, the problem is viewed as a sequence of things to be done such as reading, calculating
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and printing. A number of functions are written to accomplish these tasks. The primary focus
is on functions, A typical program structure for procedural programming is shown in Fig. 1.4,
The technique of hierarchical decomposition has been used to specify the tasks to be completed
for solving a problem. .

L o g

F_:um:.-l%un -1 Function - 2 Fi =

Function - 4 Fi -5

L 3

Function - & Function - T Function - 8

Fig. 1.4 = Typical structure of procedure-orienibed Fm;gn_m_s s I

Procedure-oriented programming basically consists of writing a list of instructions (or
actions) for the computer to follow, and organizing these instructions into groups known as
functions. We normally use a flowchart to organize these actions and represent the flow of
control from one action to another. While we concentrate on the development of functions,
very little attention is given to the data that are being used by various functions. What
happens to the data? How are they affected by the functions that work on them?

In a multi-function program, many important data items are placed as global so that they
may be accessed by all the functions, Each function may have its own local data. Figure 1.5
shows the relationship of data and functions in a procedure-oriented program.

Global data are more vulnerable to an inadvertent change by a function. In a large program
it is very difficult to identify what data is used by which function. In case we need to revise
an external data structure, we also need to revise all functions that access the data. This
provides an opportunity for bugs to creep in.

Another serious drawback with the procedural approach is that it does not model real
world problems very well. This is because functions are .mhnn-unaﬂtad u.m.'l do not really
correspond to the elements of the problem.
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Fig. 1.5 + Relationship of data and functions in procedural prograntming |

Some characteristics exhibited by procedure-oriented programming are:

Emphasis is on doing things (algorithms),

Large programs are divided into smaller programs known as functions.
Most of the functions share global data.

Data move openly around the system from function to function.
Funections transform data from one form to another.

Employs top-dewn approach in program design.

I 1.4 Object-Oriented Programming Paradigm

The major motivating factor in the invention of ohject-oriented approach is to remove some
of the flaws encountered in the procedural approach. OOFP treats data as a critical element
in the program development and does not allow it to flow freely around the system. It ties
data more closely to the functions that operate on it, and protects it from accidental
modification from outside functions. OOP allows decomposition of a problem into a number
of entities called objects and then builds data and functions around these objects. The
organization of data and functions in ohject-oriented programs is shown in Fig. 1.6. The
data of an object can be accessed only by the functions associated with that object. However,
functions of one object can access the functions of other objects.

Some of the striking features of ohject-oriented programming are:

# Emphasis is on data rather than procedure.
# Programs are divided into what are known as objects.
® Data structures are designed such that they characterize the objects.
























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































